LabCyte CORNEA-MODEL24

EYE IRRITATION TEST

OPERATION PROTOCOL

Ver. 2.7
TABLE OF CONTENTS

1. RATIONALE AND BACKGROUND ... 4
 1.1 The LabCyte CORNEA-MODEL24 EYE IRRITATION TEST 4
 1.2 BACKGROUND OF LabCyte24 EIT ... 4
 1.3 BASIS OF THE TEST METHOD .. 5
 1.4 LIMITATION OF THE METHOD .. 5
 1.5 BRIEF BASIC PROCEDURE ... 5
 1.5.1 LabCyte CORNEA-MODEL24 ... 6
 1.5.1.1 QUALITY CONTROL OF THE TEST SYSTEMS 6
 1.5.1.2 PRECAUTIONS ... 7
 1.5.2 ASSAY QUALITY CONTROL ... 7
 1.5.2.1 ASSAY ACCEPTANCE CRITERION 1: NEGATIVE CONTROL 7
 1.5.2.2 ASSAY ACCEPTANCE CRITERION 2: POSITIVE CONTROL 7
 1.5.2.3 ASSAY ACCEPTANCE CRITERION 3: STANDARD DEVIATION (SD) 8
 1.6 DATA INTERPRETATION PROCEDURE (PREDICTION MODEL) 8

2. MATERIALS ... 9
 2.1 LabCyte CORNEA-MODEL24 .. 9
 2.1.1 LabCyte CORNEA-MODEL24 KIT COMPONENTS 9
 2.1.2 SHIPMENT OF LabCyte CORNEA-MODEL24 9
 2.1.3 INSTRUCTIONS FOR USE OF LabCyte CORNEA-MODEL24 10
 2.2 CONSUMABLES .. 10
 2.3 OTHERS ... 11
 2.3.1 EQUIPMENT/INSTRUMENTS ... 11

3. TEST METHOD .. 12
 3.1 PREPARATIONS .. 12
 3.1.1 POSITIVE CONTROL ... 12
 3.1.2 NEGATIVE CONTROL .. 12
 3.1.3 POLY WASH BOTTLE FOR PBS ... 12
 3.2 TEST FOR DETECTING CHEMICALS THAT INTERFERE WITH WST-8 ENDPOINT ... 13
 3.2.1 DETECTION OF THE CHEMICALS THAT STAIN THE TISSUE 13
 3.2.1.1 STEP 1 (PRELIMINARY TEST) ... 13
 3.2.1.2 STEP 2 (FUNCTIONAL CHECK ON VIABLE TISSUE) 13
 3.3 EXECUTION OF THE TEST ... 17
 3.3.1 PREPARATION OF LabCyte CORNEA-MODEL24 (DAY -1)................. 17
 3.3.2 APPLICATION OF LIQUID TEST CHEMICALS AND RINSING (DAY 0-1) 18
 3.3.2.1 PREPARATION OF WELLS FOR POST-INCUBATION (3RD ROW) 18
 3.3.2.2 APPLICATION OF LIQUID TEST CHEMICALS AND RINSING 19
 3.3.2.3 POST-EXPOSURE INCUBATION .. 21
 3.3.3 APPLICATION OF SOLID TEST CHEMICALS AND RINSING (DAY 0-1) 22
 3.3.3.1 PREPARATION OF WELLS FOR SOLID TEST CHEMICAL APPLICATION (2ND ROW) AND FOR POST-INCUBATION (3RD ROW) ... 22
 3.3.3.2 APPLICATION OF SOLID TEST CHEMICALS 22
3.3.3.3 RINSING OF SOLID TEST CHEMICALS

57

3.3.4 WST-8 ASSAY (DAY 1)

58

3.3.4.1 PREPARATION OF WELLS FOR WST-8 ASSAY

59

3.3.4.2 WST-8 REACTION

60

3.3.4.3 SAMPLING THE REACTED WST-8 MEDIUM

61

3.3.4.4 OPTICAL DENSITY MEASUREMENTS OF THE REACTION MEDIUM

62

4. ASSESSMENT

63

4.1 CONDITIONS FOR A VALID TEST

64

4.2 ASSAY CRITERIA

65

5. References

66

MDS 1-1: RECEIPT OF LabCyte CORNEA-MODEL24 (2.1.2)

67

MDS 1-2: TEST FOR DETECTING CHEMICALS THAT INTERFERE WITH WST-8 ENDPOINT STEP-1 (3.2.1.1)

68

MDS 1-3: TEST FOR DETECTING CHEMICALS THAT INTERFERE WITH WST-8 ENDPOINT STEP-1 (3.2.2.1)

69

MDS 1-4: PREPARATION OF FREEZE KILLED TISSUE (3.2.2)

70

MDS 2: PREPARATION OF LabCyte CORNEA-MODEL24 (3.3.1)

71

MDS 3-1(LIQUID): APPLICATION OF LIQUID TEST CHEMICALS, RINSING AND POST-INCUBATION (3.3.2)

72

MDS 3-2(SOLID): APPLICATION OF SOLID TEST CHEMICALS AND RINSING (3.3.3)

73

MDS 4-1: WST-8 ASSAY (3.3.4.1, 3.3.4.2)

74

MDS 4-2: SAMPLING OF REACTING WST-8 SOLUTION (3.3.4.3) AND MEASUREMENT (3.3.4.4)

75

REVISION HISTORY

76
1. RATIONALE AND BACKGROUND

1.1 The LabCyte CORNEA-MODEL24 EYE IRRITATION TEST

The LabCyte CORNEA-MODEL24 eye irritation test (LabCyte24 EIT) is designed to identify test chemicals that cause acute eye irritation by measuring cytotoxic effects using the 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8) assay on the reconstructed human corneal epithelial (RhCE) model. The LabCyte24 EIT is not a kit, but LabCyte CORNEA-MODEL24 tissues are commercially available at a minimum of 24 LabCyte CORNEA-MODEL24 tissues per order.

1.2 BACKGROUND OF LabCyte24 EIT

Assessment of ocular irritation is an essential part of early testing procedures for the evaluation and hazard classification of substances. Therefore, it plays an important role in the safety evaluation of general consumer products and materials. Novel substances used in consumer products must undergo comprehensive toxicological evaluation for eye irritation and a variety of other adverse outcomes. To date, the in vivo Draize eye test has been the international standard assay for acute ocular toxicity evaluation (irritation and corrosion) and is described (including optimizations and refinements) in OECD Test Guideline 405. However, the use of this test has been questioned and strongly criticized for ethical concerns related to animal welfare, because it is painful to the rabbits. Thus, alternative strategies and tests are urgently required in order to evaluate the eye irritation potential of new chemicals. Corneal epithelial cells on the surface of the eye are to first to be exposed to substances and have been widely studied for links to the biological role of tissue and gene regulation. Three-dimensional RhCE models are useful as a multilayered, standardized tissue that mimics the human corneal epithelium.

The LabCyte24 EIT was developed as a replacement for the Draize eye irritation test. The Draize scoring system is heavily weighted towards corneal damage (80 out of 110 total score), because irreversible damage to the cornea can lead to blindness. Since damage to the cornea is so crucial for human health, corneal tissue can be considered a useful tool for the development of in vitro eye irritation testing.
1.3 BASIS OF THE TEST METHOD

Damage induced by eye irritants generally progresses from the corneal epithelium through the stroma and potentially to the endothelium, and the LabCyte24 EIT is able to provide information on the first stages of this progression. Irritants damage cells while penetrating the corneal epithelium layer, and the cytotoxic progression can be estimated by analyzing cell viability in the LabCyte CORNEA-MODEL24 tissue using standardized methods. Although the tissues represent only the corneal epithelium, (very mild responses would also be reflective of some conjunctival irritation), it can be used to estimate deeper damage as far as the stroma by the analyzing cell viability.

The relative viability of the tissue exposed to a test chemical is measured using the WST-8 assay immediately after exposure and again after a post-exposure period. A viability of 40% of the negative control value was used as the cutoff in identifying test chemicals as an irritant (GHS Category 1 or 2) or an non-irritant (GHS No Category). Some culture environments might allow the detection of very small quantities of cytokines secreted by the corneal epithelial tissue in response to topical application of test chemicals.

1.4 LIMITATION OF THE METHOD

One limitation of this assay method is potential interference of the test chemical with the WST-8 endpoint. A colored test chemical or one that directly reduces WST-8 (and thereby mimics dehydrogenase activity of the cellular mitochondria) could interfere with the WST-8 endpoint. This is only a problem, however, if there are significant residual levels of the test chemical on or in the tissue at the time of the WST-8. Although this is considered unlikely, if it did happen, both the actual metabolic WST-8 reduction and the quasi direct WST-8 reduction by a colored test chemical can be quantified using the procedure described in Section 3.2 “TEST FOR DETECTING CHEMICALS THAT INTERFERE WITH WST-8 ENDPOINT”.

1.5 BRIEF BASIC PROCEDURE

On the day of receipt, LabCyte CORNEA-MODEL24 tissues are incubated overnight to release transport–stress-related compounds and debris.
For liquid test chemicals, tissues are topically exposed for 1 minute. Preferably, three tissues are used for each test chemical as well as for the positive and negative controls. After exposure, tissues are thoroughly rinsed and blotted to remove the test chemical, then transferred to fresh medium and post-incubated for 24 hours. For solid test chemicals, tissues are exposed for 24 hours but are not post-incubated.

After post-incubation of tissue exposed to liquid test chemicals or after exposure of tissue exposed to solid test chemicals, the tissues are each transferred to a well containing the WST-8 medium in a 1:10 dilution with Earle balanced salt solution (EBSS). After a four-hour WST-8 incubation, the orange water-soluble formazan salt is formed in the WST-8 medium by cellular mitochondria and optical density (OD) of the WST-8 medium is measured using a spectrophotometer at 450 nm and 650 nm as reference. Relative cell viability is calculated for each tissue as % of the mean of the negative control tissues. Test chemicals that produce a relative cell viability below 40% of the negative control are predicted to be irritants.

1.5.1 LabCyte CORNEA-MODEL24

The LabCyte CORNEA-MODEL24 is a commercially available RhCE model produced by Japan Tissue Engineering Co. Ltd. It comprises normal human corneal epithelial cells that are derived from a human cornea. The cells are cultured with 3T3-J2 cells as a feeder layer in order to expand them while maintaining their phenotype (Rheinwald and Green, 1975; Green, 1978). Reconstruction of the human cultured corneal epithelial tissue is achieved by cultivating and proliferating the corneal epithelial cells on an inert filter substrate with a surface area of 0.3 cm² at an air-liquid interface for 13 days using an optimized medium containing 5% fetal bovine serum. This results in the formation of a multilayer structure comprising a fully differentiated corneal epithelium with features mimicking those of a normal human corneal epithelium. For delivery, LabCyte CORNEA-MODEL24 tissues are embedded in an agarose gel containing a nutrient solution and shipped in 24-well plates.

1.5.1.1 QUALITY CONTROL OF THE TEST SYSTEMS

LabCyte CORNEA-MODEL24 tissue is manufactured in accordance with well-defined quality
assurance procedures. Each production batch comes with quality control documentation that identifies storage conditions, RhCE instructions for use, lot number and origin, histology (demonstration of human multilayered corneal epithelial-like structure), cell viability, and barrier function integrity (0.1 ≤ IC₅₀ ≤ 0.4).

1.5.1.2 PRECAUTIONS

Corneal epithelial cells are taken from healthy donors who are free of HIV or hepatitis. Nevertheless, always adhere to the following procedures for the handling of biological materials:

(a) Always wear gloves during handling of the eye and kit components.
(b) All corneal epithelial tissue as well as all material and media that came in contact with it should be decontaminated prior to disposal using special containers or autoclaving.

1.5.2 ASSAY QUALITY CONTROL

1.5.2.1 ASSAY ACCEPTANCE CRITERION 1: NEGATIVE CONTROL

The absolute OD of the negative control for either liquid or solid test chemicals (NC-L or NC-S) tissues (treated with sterile PBS for liquid test chemicals or untreated for solid test chemicals) in the WST-8 assay is an indicator of tissue viability obtained in the testing laboratory after shipping and storing procedures and under specific conditions of use.

0.5 ≤ Mean OD (A₄₅₀/₆₅₀) measured value ≤ 1.6

1.5.2.2 ASSAY ACCEPTANCE CRITERION 2: POSITIVE CONTROL

Ethanol is used as the positive control (PC) for liquid test chemicals (PC-L) and is tested concurrently with the liquid test chemicals. Lauric acid is used as the PC for solid test chemicals (PC-S) and is tested concurrently with the solid test chemicals.

Concurrent here means that the PC-L and the PC-S are to be tested for each run.

Mean tissue viability ≤ 40%
1.5.2.3 ASSAY ACCEPTANCE CRITERION 3: STANDARD DEVIATION (SD)

Since eye irritation potential is predicted from the mean viability of three individual tissues, the variability of tissue replicates must kept at an acceptably low level.

Standard Deviation (SD) of tissue viability of three identically treated replicates for the negative control, positive control, and test chemicals ≤ 18%

1.6 DATA INTERPRETATION PROCEDURE (PREDICTION MODEL)

The United Nations Globally Harmonized System (GHS) (United Nations, 2003) was used as a reference for the in vivo eye irritation classification of test chemicals.

For the purpose of this EIT, an eye irritant is defined as a substance that induces reversible ocular lesions after administration to rabbits.

According to GHS classifications, a substance is an irritant (Category 1 or 2) if the mean relative viability of three individual tissues exposed to the test chemical is falls below 40% of the mean viability of the negative control. (Refer to Table 1.)

<table>
<thead>
<tr>
<th>In vitro results</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue viability is ≤ 40%</td>
<td>Category 1 or 2</td>
</tr>
<tr>
<td>Tissue viability is > 40%</td>
<td>No Category</td>
</tr>
</tbody>
</table>

Table 1 Prediction model of LabCyte24 EIT
2. MATERIALS

2.1 LabCyte CORNEA-MODEL24

2.1.1 LabCyte CORNEA-MODEL24 KIT COMPONENTS

LabCyte CORNEA-MODEL24 kit components are shown in Table 2.

Table 2 LabCyte CORNEA-MODEL24 Kit Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LabCyte CORNEA-MODEL24 plate</td>
<td>1 plate</td>
<td>Contains 24 culture inserts with tissues fixed in nutritive agar medium for transport (usable area: 0.3 cm²).</td>
</tr>
<tr>
<td>Assay Medium</td>
<td>1 bottle</td>
<td>Basic medium for incubation (30 mL). Keep refrigerated.</td>
</tr>
<tr>
<td>24-well plate</td>
<td>1 plate</td>
<td>Blank plate for use in assay. Store at room temperature.</td>
</tr>
</tbody>
</table>

2.1.2 SHIPMENT OF LabCyte CORNEA-MODEL24

LabCyte CORNEA-MODEL24 is packed in a special Icompo container available from and delivered by NIPPON EXPRESS CO., LTD. After the kit is delivered, examine the contents and make sure that all components (LabCyte CORNEA-MODEL24 plate, assay medium, and 24-well assay plate) are included in the package. Also confirm lot numbers and expiration dates. Record details in Methods Documentation Sheet (MDS) 1. (See MSD-1).

NIPPON EXPRESS will pick up the Icompo container at a later date (generally, the day after delivery), and it should be returned together with an shipping invoice and the insulating materials.
2.1.3 INSTRUCTIONS FOR USE OF LabCyte CORNEA-MODEL24

Always incubate all of the culture inserts after opening the package. Do not store the culture inserts after opening.

The human corneal epithelial tissue cells used in the LabCyte CORNEA-MODEL24 originate from a normal human donor and are HIV-, HBV-, HCV-, and HPV-negative. They are to be handled, nevertheless, with due care and in accordance with laboratory biosafety guidelines for handling human-derived materials.

2.2 CONSUMABLES

The following consumables are required.

*The following quantities are necessary to assay between one and six 6 test chemicals at a time.

- Assay Medium, 100 mL (J-TEC: 402250) 1
- Cell Counting Kit-8, 500 test (Dojindo: CK04) 4
- 24-well assay plate (Becton, Dickinson and Company: 353047) 7-8
- 96-well plate (Becton, Dickinson and Company: 353072 or equivalents) 1
- PBS, 500 mL (Invitrogen: 14190-144 or equivalents) 2 or 3 bottle
- Earle balanced salt solution (EBSS), 500 mL (SIGMA-ALDRICH: E3024) 1 bottle
- Sterile cotton buds (JAPAN COTTON BUDS: 10A754D or equivalents) 1 box
- Micro-pipette tips (sterile: 10–200µL, 200–1000µL)
- Microtubes (1.5mL)
- Dish (10cm)
- Paper towel

Convenient consumable items are shown followings.

Also, it would be convenient to have the following.

- Capillary & piston for positive-displacement-type pipette (10-100µL)
2.3 OTHERS

2.3.1 EQUIPMENT/INSTRUMENTS

- Safety cabinet (or clean bench)
- Water bath (37°C)
- CO₂ incubator (37°C, 5% CO₂, capable of maintaining high humidity)
- Autoclave
- 96-well multi-plate reader (required filters: 450 nm, 650 nm)
- Precision balance (0.1 mg)
- Aspirator
- Stop-watches
- Adjustable micro-pipette (10–200 μL, 200–1000 μL)
- Sharp-edged forceps (sterile)
- Micro spatula (sterile)
- Beaker (1–2 L: sterile)
- Sterilizable poly wash bottle (500–1000 mL: sterile) with wide mouth (mouth > 3-mm dia.)
- Mortar with pestle
- Also, it would be convenient to have the following.
- Positive-displacement-type pipette (10–100 μL)
3. TEST METHOD

*Procedures described in Sections 3.1.1 to 3.1.3 and Sections 3.3.1 to 3.3.3 are to be performed aseptically in a safety cabinet or clean bench. Procedures other than those mentions in the previous sentence need not be performed aseptically. Refer to Section 2.1.3 “INSTRUCTIONS FOR USE OF LabCyte CORNEA-MODEL24”.

3.1 PREPARATIONS

3.1.1 POSITIVE CONTROL

(1) Ethanol is used as a positive control for liquid test chemicals.

(2) Lauric acid is used as a positive control for solid test chemicals.

3.1.2 NEGATIVE CONTROL

(1) PBS is used as a negative control for liquid test chemicals.

(2) Non-treatment is a negative control for solid test chemicals.

3.1.3 POLY WASH BOTTLE FOR PBS

(1) Sterilize poly wash bottle by autoclave.

(2) Fill the sterilized poly wash bottle with sterile PBS.
3.2 TEST FOR DETECTING CHEMICALS THAT INTERFERE WITH WST-8 ENDPOINT

There are two kinds of test chemicals that interfere with the WST-8 assay.

(a) Test chemicals that stain corneal epithelial tissues directly.

(b) Test chemicals that react directly with WST-8.

The test chemicals that can dye the corneal epithelial tissues will be extracted from the colored tissue during WST-8 reaction, affecting the OD measurement. Also, the test chemicals that can directly reduce the WST-8 medium will affect the OD measurement due to unexpected reduction reaction by residues of test chemicals in the culture inserts. These test chemicals are needed to perform additional experiments. The procedure is described below.

3.2.1 DETECTION OF THE CHEMICALS THAT STAIN THE TISSUE

3.2.1.1 STEP 1 (PRELIMINARY TEST)

1. Add 50μL (Liquid) or 10mg (Solid) of the test chemical into wells of 24-well assay plate preliminarily filled with 0.5mL of distilled water. Untreated distilled water is used as control.

2. Close the lid of 24-well assay plate and incubate the mixture in CO₂ incubator for 15 minutes.

3. After incubation, mix gently and evaluate the color change of the distilled water by visual check.

4. When the color of the solution changes significantly, the test chemical is presumed to have the potential to stain the tissue. A functional check on viable tissues (Step2) should be performed. If the color of the solution does not change significantly, the test chemical is determined not to have a potential to stain the tissue.

5. Record the details of steps 1 to 4 above in MDS 1-2.

3.2.1.2 STEP 2 (FUNCTIONAL CHECK ON Viable TISSUE)

1. Add 50 μL (liquid) or 10 mg (solid) of the test chemical, which could clearly change the color of the distilled water in step 1, onto the surface of the epidermis tissues. PBS are used as negative control.

2. Go to the Section 3.3 EXECUTION OF THE TEST and perform the experiments according to the procedures, expect for the WST-8 reaction. In the section of WST-8 assay, use the EBSS that does
not contain WST stock solution, instead of diluted WST-8 medium to evaluate the affected OD values by colored diluted water. (correcting tissue).

(3) The corrected OD is calculated using the following formula.

\[
\text{Corrected OD} = A - (B - C)
\]

\(A\) : the OD of viable tissue exposed to a test chemical.
\(B\) : the mean OD of correcting tissue exposed to a test chemical.
\(C\) : the mean OD of correcting tissue exposed to the negative control.

(4) If a corrected OD is below 0, the OD is considered to be 0.

(5) When a cell viability that is calculated according to the procedures described in Section 3.3.4 is \(\leq 40\%\), the test chemical is predicted to be an irritant (GHS Category 1 or 2) and there is no need to calculate a corrected value.

3.2.2 DETECTION OF CHEMICALS THAT DIRECTLY REDUCE WST-8

3.2.2.1 STEP 3 (PRELIMINARY TEST)

(1) Dilute the cell counting kit-8 (WST-8 stock solution) with EBSS (Cell Counting Kit-8:EBSS = 1:10), and then prepare the diluted WST-8 medium.

*Prepare WST-8 medium before use.

Dispense 0.3 mL of diluted WST-8 medium into each well of the 24-well assay plate.

(2) Add 50 \(\mu\)L of a liquid test chemical or 10 mg of a test chemical to the wells of 24-well assay plate.

The diluted WST-8 medium is used as control.

(3) Put on the lid of 24-well assay plate and incubate in a CO\(_2\) incubator for about 4 hours.

(4) After incubation, shake the mixture gently and evaluate the color change of the diluted WST-8 medium by visual check.
PHOTO 1 Example of test chemicals to interfere the WST-8 assay directly (STEP 1).

When test chemicals like m-Phenylenediamine, Monoethanolamine, or Calcium thioglycollate have colored the diluted WST-8 medium, Step 4 must be performed.

(5) Significant coloring of the diluted WST-8 medium by the test chemical indicates the interference between test chemicals and the WST-8 assay medium. The additional functional check is required for these interference chemicals. Go to step 4 described below.

(6) Record the details of steps 1 to 5 above in MDS 1-3.

3.2.2.2 STEP 4 (FUNCTIONAL CHECK ON FREEZE-KILLED TISSUE)

(1) Add 50 μL of a liquid test chemical or 10 mg of solid a test chemical that clearly changed the color of the diluted WST-8 medium (3.2.1. STEP 3) to the surface of the corneal epithelial tissues.

(2) Go to Section 3.3 “EXECUTION OF THE TEST” and perform the experiments using freeze-killed corneal epithelial tissues, instead of using viable corneal epithelial tissues. The freeze-killed tissues are prepared by placing untreated LabCyte CORNEA-MODEL in 80°C or lower for more than 30 min.

Record the details of freeze-killing the tissue in MDS 1-3.

(3) The corrected OD is calculated using the following formula.

Corrected OD = A − (B − C)

A: the OD of viable tissue exposed to a test chemical.
B: the mean OD of freeze-killed tissue (correcting tissue) exposed to a test chemical.
C: the mean OD of freeze-killed tissue (correcting tissue) exposed to the negative control.

(4) If a corrected OD is below 0, the OD is considered to be 0.
(5) Calculate a cell viability according to the procedures described in Section 3.3.4.4. In case that the cell viability is \(\leq 40\% \), the test chemical is predicted to be an irritant (GHS Category 1 or 2) and there is no need to calculate a corrected value.
3.3 EXECUTION OF THE TEST

3.3.1 PREPARATION OF LabCyte CORNEA-MODEL24 (DAY -1)

(1) Warm the assay medium to 37°C for 30 minutes in a water bath.

(2) Dispense 0.5 mL/well of the warm assay medium into the six wells of the 1st row of each assay plate for LIQUID/SOLID. See Fig. 1.

(3) Open the LabCyte CORNEA-MODEL24 aluminum package.

(4) Open the LabCyte CORNEA-MODEL24 plate lid and pick up the culture inserts using sterile forceps. *Do not touch the surface of the corneal epithelial tissue in the culture inserts.

*Use forceps to remove any agar medium sticking to the outside of the culture inserts.

(5) Transfer the culture inserts to the assay medium in the wells of the 1st row using sterile forceps. See Fig. 2.

(6) *Avoid the formation of air bubbles under the tissue inserts. Close the lid on the plate and place it in a CO₂ incubator.

(7) Incubate overnight (15–30 hours) until ready to perform Section 3.3.2 “APPLICATION OF LIQUID TEST CHEMICALS, RINSING AND POST-INCUBATION” or Section 3.3.3 “APPLICATION OF SOLID TEST CHEMICALS AND RINSING”.

(8) Record the details of steps 1 to 7 above in MDS 2.
3.3.2 APPLICATION OF LIQUID TEST CHEMICALS AND RINSING (DAY 0–1)

3.3.2.1 PREPARATION OF WELLS FOR POST-INCUBATION (3RD ROW)

(1) Warm the assay medium to 37°C for 30 minutes using a water bath.

(2) Take out the assay plate for LIQUID from the CO₂ incubator.

(3) Open the lid of the assay plate for LIQUID, and use a micropipette to fill the six wells of the 3rd row with 0.5 mL/well of the warm assay medium.

See Fig. 3.

(4) Close the lid of the assay plate and perform Section 3.3.2.2 “APPLICATION OF LIQUID TEST CHEMICALS AND RINSING” continuously.

(5) If the test chemicals are not applied immediately, store the Assay Plate for LIQUID in a CO₂ incubator until ready apply but for no more than 12 hours.

(6) Record the details of steps 1 to 5 above in MDS 3-1.
3.3.2.2 APPLICATION OF LIQUID TEST CHEMICALS AND RINSING

(1) Take out the assay plate for LIQUID from the CO₂ incubator.

(2) Using a micropipette, apply 50 μL of a liquid test chemical to the surface of the corneal epithelial tissues in the 1st row of the assay plate. Each test chemical is to be tested in three wells (N=3). Carefully apply the test chemical to the central part of each corneal epithelial tissue. After application, close the lid of the assay plate and tap the sides of the plate to spread the liquid test chemicals to spread out over the entire corneal epithelial surface. If necessary, use a micro spatula to spread the liquid test chemical over the entire surface. Take care not to press down on the surface of the corneal epithelial with the spatula.

*For viscous LIQUID test chemicals, use a wide orifice cell saver tip (See Photo 2.) or positive displacement type pipette.

*Use a pipette or other equipment to familiarize yourself beforehand with the characteristics the test chemicals.

*Assay no more than two test chemicals on one 24-well assay plate.

See Fig. 4.

Each chemical is tested in three wells, using three tissues (N = 3).

(3) Apply test chemicals to each well at an interval of one to three minutes.

(4) Close the lid and incubate each well for 60 ±10 seconds in the cabinet at room temperature.

*Keep the lid of the assay plate closed at all times except when applying test chemicals. Leaving the lid open could affect the quantity of the test chemical in the well due to air circulation in the cabinet.
(5) Wait for 60 ±10 seconds after applying a test chemical, then open the assay plate for LIQUID and pick up a culture insert with sterile forceps.

(6) Discard the test chemical on the tissue by decantation and tapping it on a beaker. Fill the culture insert to overflowing with PBS from a poly wash bottle.

* Keep PBS flush during rinsing to wash away the test chemical from the tissue surface.

See Photo 3.

*To avoid damaging the tissue with too forceful a stream, use a wide-mouth nozzle on the poly wash bottle.

(7) Decant the PBS into the beaker. Remove as much of the PBS inside the culture insert as possible by tapping it on the beaker.

See Photo 4.

(8) Repeat steps 6 and 7 at least 10 times to remove as much as possible of the residual test chemical on the tissue surface.

*Depending upon the physical properties of the test chemical, bubbles might form in an insert during washing. Continue washing until all bubbles disappear.

(9) Using a sterile cotton bud, gently remove as much as possible of the leftover PBS both inside and outside the culture insert.

See Photo 5.

*Take care not to press down on the surface of the tissue with the sterile cotton bud.
(10) Wipe the culture insert and then place it in the well of the same column in the 3rd row.

See Fig. 5.

*Take care to prevent air bubbles from forming under the culture inserts.

(11) Repeat steps 1 to 11 for all culture inserts at one- to three-minute intervals.

(12) Record the details of steps 1 to 12 above in MDS 3-1.

3.3.2.3 POST-EXPOSURE INCUBATION

(1) After performing Section 3.3.2.2 “APPLICATION OF LIQUID TEST CHEMICALS AND RINSING”, close the lid of the assay plate for LIQUID and place it in a CO₂ incubator as soon as possible.

(2) Incubate for 24 ± 1 hours.

(3) Record the details of steps 1 and 2 above in MDS 3-1.
3.3.3 APPLICATION OF SOLID TEST CHEMICALS AND RINSING (DAY 0–1)

3.3.3.1 PREPARATION OF WELLS FOR SOLID TEST CHEMICAL APPLICATION (2ND ROW) AND FOR POST-INCUBATION (3RD ROW)

1. Warm the assay medium to 37°C for 30 minutes using a water bath.
2. Take out the assay plate for SOLID from the CO₂ incubator.
3. Open the lid of the assay plate for SOLID and use a micropipette to fill the 12 wells in the 2nd and 3rd rows with 0.5 mL/well of warm assay medium. See Fig. 6.
4. Close the lid of the assay plate and go to Section 3.3.3.2 “APPLICATION OF SOLID TEST CHEMICALS” continuously.
5. If the test chemicals are not applied immediately, store the Assay Plate for LIQUID in a CO2 incubator until ready apply but for no more than 12 hours.
6. Record the details of steps 1 to 5 above in MDS 3-2.

3.3.3.2 APPLICATION OF SOLID TEST CHEMICALS

1. Take out the assay plate for SOLID from the CO₂ incubator.
 Using a precision balance, weigh out 10 ±2 mg of the solid test chemicals. If necessary, crush and grind the solid test chemicals in a mortar with pestle. Apply the solid test chemical to the surface of the corneal epithelial tissue. See Photo 6.
 If necessary, use a micro spatula to spread the test chemical gently over the entire surface. Use three wells per test chemical (N = 3).
See Fig. 7.

(2) Place the exposed culture insert in the well of the same column in the 2nd row (chemical application).

See Fig. 8.

*Take care to prevent air bubbles from forming under the culture inserts.

(3) Close the lid of the assay plate for SOLID and place it in a CO₂ incubator. Incubate for 24 ± 1 hours.

(4) Record the details of steps 1 to 3 above in MDS 3-2

3.3.3.3 RINSING OF SOLID TEST CHEMICALS

(1) After incubation, take out the assay plate for SOLID from the CO₂ incubator.

(2) Open the assay plate for SOLID and pick up a culture insert with sterile forceps.

(3) Discard test chemicals on the tissue by tilting the insert and tapping if on a beaker. Fill the culture insert to overflowing with PBS from a poly wash bottle.

* Keep PBS flush during rinsing to wash away the test chemical from the tissue surface.

See Photo 7.

*To avoid damaging the tissue with too forceful a stream, use a wide-mouth nozzle on the poly wash bottle.

(4) Tilt the insert to discard the PBS into the beaker. Remove as much of the PBS inside the culture insert as possible by tapping it on the beaker.
See Photo 8.

(5) Repeat steps 3 and 4 at least 10 times to remove as much as possible of the residual test chemical on the tissue surface.

(6) Using a sterile cotton bud, gently remove as much as possible of the leftover PBS both inside and outside the culture insert.

See Photo 9.

(7) If it proves difficult to remove completely all the residual test chemical from the corneal epithelial tissue surface, remove as much as possible and continue to step 8.

(8) Place the rinsed culture insert in the well of the same column in the 3rd row (rinse).

See Fig. 9.

*Take care to prevent air bubbles from forming under the culture inserts.

(9) Record the details of steps 1 to 8 above in MDS 3-2.

After rinsing step, perform Section 3.3.4 “WST-8 assay” continuously.
3.3.4 WST-8 ASSAY (DAY 1)

3.3.4.1 PREPARATION OF WELLS FOR WST-8 ASSAY

(1) Warm the EBSS to 37°C for 30 minutes using a water bath.

(2) Dilute the cell counting kit-8 (WST-8 stock solution) with EBSS (Cell Counting Kit-8:EBSS = 1:10), and then warm the diluted WST-8 medium. Prepare the additional dilute WST-8 medium for blanks in the WST-8 assay.

*Prepare WST-8 medium before performing the WST-8 assay.

(3) Take out the assay plate for LIQUID from the CO₂ incubator or prepare the assay plate for SOLID.

(4) Open the lid of the assay plate and use a micropipette to fill each well of the 4th row with 0.3 mL/well of the warm diluted WST-8 medium.

See Fig. 10.

Close the lid of the assay plate and perform Section 3.3.4.2 “WST-8 REACTION” continuously.

(5) Record the details of steps 1 to 4 above in MDS 4-1.

3.3.4.2 WST-8 REACTION

(1) Add about 20 mL of PBS each to two dishes: PBS dish 1 and PBS dish 2.

(2) Open an assay plate (for either LIQUID or SOLID) and pick up a culture insert with sterile forceps.

(3) Remove residual culture medium on a culture insert by washing in PBS dish 1 (first time) and the in PBS dish 2 (second time). After washing, wipe the bottom with a paper towel.

(4) After washing and wiping, place the culture insert in the well of the same column in the 4th row.

See Fig. 11.
* Avoid the formation of air bubbles under the culture inserts.

(4) Close the lid of the assay plate and place it in the CO₂ incubator.

Incubate for 4 hours ± 20 minutes.

Record the details of steps 1 to 5 above in **MDS 4-1**.

3.3.4.3 SAMPLING THE REACTED WST-8 MEDIUM

(1) After incubation, take out the assay plate from the CO₂ incubator.

(2) Open the lid of the assay plate and remove the culture inserts from the 4th row with forceps.

Transfer 200 μL of the reacted WST-8 dilution medium into the wells of a 96-well plate.

*Figs. 12A and 12B show typical allocations on a 96-well plate for both living and correcting tissue (freeze-killed tissue or tissue reacted with only EBSS that does not contain WST-8 stock solution).

Fig.12A Allocation on a 96-well plate for living tissue

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blank</td>
<td>NC for LIQUID-1</td>
<td>NC for LIQUID-2</td>
<td>NC for LIQUID-3</td>
<td>PC for LIQUID-1</td>
<td>PC for LIQUID-2</td>
<td>PC for LIQUID-3</td>
<td>NC for SOLID-1</td>
<td>NC for SOLID-2</td>
<td>NC for SOLID-3</td>
<td>PC for SOLID-1</td>
<td>PC for SOLID-2</td>
</tr>
<tr>
<td>B</td>
<td>LIQUID 1-1</td>
<td>LIQUID 1-2</td>
<td>LIQUID 1-3</td>
<td>LIQUID 2-1</td>
<td>LIQUID 2-2</td>
<td>LIQUID 2-3</td>
<td>SOLID 1-1</td>
<td>SOLID 1-2</td>
<td>SOLID 1-3</td>
<td>SOLID 2-1</td>
<td>SOLID 2-2</td>
<td>SOLID 2-3</td>
</tr>
<tr>
<td>C</td>
<td>LIQUID 3-1</td>
<td>LIQUID 3-2</td>
<td>LIQUID 3-3</td>
<td>LIQUID 4-1</td>
<td>LIQUID 4-2</td>
<td>LIQUID 4-3</td>
<td>SOLID 3-1</td>
<td>SOLID 3-2</td>
<td>SOLID 3-3</td>
<td>SOLID 4-1</td>
<td>SOLID 4-2</td>
<td>SOLID 4-3</td>
</tr>
<tr>
<td>D</td>
<td>LIQUID 5-1</td>
<td>LIQUID 5-2</td>
<td>LIQUID 5-3</td>
<td>LIQUID 6-1</td>
<td>LIQUID 6-2</td>
<td>LIQUID 6-3</td>
<td>SOLID 5-1</td>
<td>SOLID 5-2</td>
<td>SOLID 5-3</td>
<td>SOLID 6-1</td>
<td>SOLID 6-2</td>
<td>SOLID 6-3</td>
</tr>
<tr>
<td>E</td>
<td>LIQUID 7-1</td>
<td>LIQUID 7-2</td>
<td>LIQUID 7-3</td>
<td>LIQUID 8-1</td>
<td>LIQUID 8-2</td>
<td>LIQUID 8-3</td>
<td>SOLID 7-1</td>
<td>SOLID 7-2</td>
<td>SOLID 7-3</td>
<td>SOLID 8-1</td>
<td>SOLID 8-2</td>
<td>SOLID 8-3</td>
</tr>
<tr>
<td>F</td>
<td>LIQUID 9-1</td>
<td>LIQUID 9-2</td>
<td>LIQUID 9-3</td>
<td>LIQUID 10-1</td>
<td>LIQUID 10-2</td>
<td>LIQUID 10-3</td>
<td>SOLID 9-1</td>
<td>SOLID 9-2</td>
<td>SOLID 9-3</td>
<td>SOLID 10-1</td>
<td>SOLID 10-2</td>
<td>SOLID 10-3</td>
</tr>
<tr>
<td>G</td>
<td>LIQUID 11-1</td>
<td>LIQUID 11-2</td>
<td>LIQUID 11-3</td>
<td>LIQUID 12-1</td>
<td>LIQUID 12-2</td>
<td>LIQUID 12-3</td>
<td>SOLID 11-1</td>
<td>SOLID 11-2</td>
<td>SOLID 11-3</td>
<td>SOLID 12-1</td>
<td>SOLID 12-2</td>
<td>SOLID 12-3</td>
</tr>
</tbody>
</table>
Fig.12B Allocation on a 96-well plate for correcting tissue.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blank</td>
<td>NC for LIQUID-1</td>
<td>NC for LIQUID-2</td>
<td>NC for LIQUID-3</td>
<td>NC for SOLID-1</td>
<td>NC for SOLID-2</td>
<td>NC for SOLID-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>LIQUID 1-1</td>
<td>LIQUID 2-1</td>
<td>LIQUID 3-1</td>
<td>LIQUID 4-1</td>
<td>LIQUID 5-1</td>
<td>LIQUID 6-1</td>
<td>LIQUID 7-1</td>
<td>LIQUID 8-1</td>
<td>SOLID 1-1</td>
<td>SOLID 2-1</td>
<td>SOLID 3-1</td>
<td>SOLID 4-1</td>
</tr>
<tr>
<td>C</td>
<td>LIQUID 2-2</td>
<td>LIQUID 3-2</td>
<td>LIQUID 4-2</td>
<td>LIQUID 5-2</td>
<td>LIQUID 6-2</td>
<td>LIQUID 7-2</td>
<td>LIQUID 8-2</td>
<td>SOLID 1-2</td>
<td>SOLID 2-2</td>
<td>SOLID 3-2</td>
<td>SOLID 4-2</td>
<td>SOLID 5-2</td>
</tr>
<tr>
<td>D</td>
<td>LIQUID 3-3</td>
<td>LIQUID 4-3</td>
<td>LIQUID 5-3</td>
<td>LIQUID 6-3</td>
<td>LIQUID 7-3</td>
<td>LIQUID 8-3</td>
<td>SOLID 1-3</td>
<td>SOLID 2-3</td>
<td>SOLID 3-3</td>
<td>SOLID 4-3</td>
<td>SOLID 5-3</td>
<td>SOLID 6-3</td>
</tr>
<tr>
<td>E</td>
<td>LIQUID 4-4</td>
<td>LIQUID 5-4</td>
<td>LIQUID 6-4</td>
<td>LIQUID 7-4</td>
<td>LIQUID 8-4</td>
<td>SOLID 1-4</td>
<td>SOLID 2-4</td>
<td>SOLID 3-4</td>
<td>SOLID 4-4</td>
<td>SOLID 5-4</td>
<td>SOLID 6-4</td>
<td>SOLID 7-4</td>
</tr>
<tr>
<td>F</td>
<td>LIQUID 5-5</td>
<td>LIQUID 6-5</td>
<td>LIQUID 7-5</td>
<td>LIQUID 8-5</td>
<td>SOLID 1-5</td>
<td>SOLID 2-5</td>
<td>SOLID 3-5</td>
<td>SOLID 4-5</td>
<td>SOLID 5-5</td>
<td>SOLID 6-5</td>
<td>SOLID 7-5</td>
<td>SOLID 8-5</td>
</tr>
<tr>
<td>G</td>
<td>LIQUID 6-6</td>
<td>LIQUID 7-6</td>
<td>LIQUID 8-6</td>
<td>SOLID 1-6</td>
<td>SOLID 2-6</td>
<td>SOLID 3-6</td>
<td>SOLID 4-6</td>
<td>SOLID 5-6</td>
<td>SOLID 6-6</td>
<td>SOLID 7-6</td>
<td>SOLID 8-6</td>
<td>SOLID 9-6</td>
</tr>
<tr>
<td>H</td>
<td>LIQUID 7-7</td>
<td>LIQUID 8-7</td>
<td>SOLID 1-7</td>
<td>SOLID 2-7</td>
<td>SOLID 3-7</td>
<td>SOLID 4-7</td>
<td>SOLID 5-7</td>
<td>SOLID 6-7</td>
<td>SOLID 7-7</td>
<td>SOLID 8-7</td>
<td>SOLID 9-7</td>
<td>SOLID 10-7</td>
</tr>
</tbody>
</table>

Add reacted WST-8 medium to the same locations as living tissues (Fig.12A).

(3) Record the details of steps 1 to 2 above in MDS 4-2.

3.3.4.4 OPTICAL DENSITY MEASUREMENTS OF THE REACTION MEDIUM

(1) Using a 96-well plate reader, measure OD at 450 nm and 650 nm and then used the following equation to determine a composite OD for each well.

\[
\text{Composite OD} = (\text{OD}_{\text{TC}} \text{ at } 450 \text{ nm} - \text{OD}_{\text{blank}} \text{ at } 450 \text{ nm}) - (\text{OD}_{\text{TC}} \text{ at } 650 \text{ nm} - \text{OD}_{\text{blank}} \text{ at } 650 \text{ nm})
\]

*If the plate reader can be programmed to perform this calculation automatically, then only the composite OD value need be recorded.

(2) Calculate the mean OD for the negative control, a cell viability for each individual tissue, and a mean cell viability (including SD) for each test chemical using the following equations.
Mean \(\text{OD}_{\text{NC}} \) = \frac{\text{Sum of the OD}_{\text{NC}} \text{ for three replicate tissues}}{3}

Tissue cell viability (%) = \frac{\text{Each tissue OD}_{\text{TC}}}{\text{Mean OD}_{\text{NC}}} \times 100

Mean cell viability (%) = \frac{\text{Sum total of cell viability (%) for three replicate tissues}}{3}

(3) Record the details of steps 1 and 2 above in MDS 4-2.
4. ASSESSMENT

4.1 CONDITIONS FOR A VALID TEST

An eye irritation test is considered valid if all three of the following criteria have been met.

- Tissue viability: $0.5 \leq \text{mean OD} (\text{A450/650}) \text{ measured value for negative control} \leq 1.6$
- Positive control: mean tissue viability for positive control ≤ 40
- SD: SD (negative control, positive control and each test chemicals) of tissue viability of 3 identically treated replicates $\leq 18\%$

4.2 ASSAY CRITERIA

The criteria for in vitro prediction are shown below.

After exposure to a chemical, if cell viability is 40\% or less, the chemical is predicted to be an irritant (GHS Category 1 or 2), otherwise it is predicted to be a non-irritant (GHS No Category).

See Table 3.

Table 3 Prediction model of LabCyte24 EIT

<table>
<thead>
<tr>
<th>Tissue Viability</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq 40%$</td>
<td>Category 1 or 2</td>
</tr>
<tr>
<td>$> 40%$</td>
<td>No Category</td>
</tr>
</tbody>
</table>
5. References

MDS 1-1:
RECEIPT OF LabCyte CORNEA-MODEL24 (2.1.2)

Laboratory name: ___________ Test name: ___________ Test no.: ___________

1. LabCyte CORNEA-MODEL24
 Date received: ____________________________
 Lot no.: ____________________________
 Expiration date: ____________________________

 Accessories: Assay medium, 30mL □ (Lot no.: ___________ Expiration date: ___________)
 24 well assay plate □

 Note

2. Assay medium
 Date received: ____________________________
 Lot no.: ____________________________
 Expiration date: ____________________________

 Note

Date: ___________ Operator: ___________ Check date: ___________ Study director: ___________
Secretariat Check date: ___________ Name: __
MDS 1-2:
TEST FOR DETECTING CHEMICALS THAT INTERFERE WITH WST-8 ENDPOINT

STEP-1 (3.2.1.1)

<table>
<thead>
<tr>
<th>Laboratory name:</th>
<th>Test name:</th>
<th>Test no.:</th>
</tr>
</thead>
</table>

1. Add distilled water (0.5 mL) to the wells of the 24-well assay plate.

To add distilled water (0.5 mL) □ Execution date/time: ____________________________

2. Apply test chemicals to the wells of the 24-well assay plate.

3. Culture the 24-well assay plate in CO₂ incubator for 4 hours.

Time of WST-8 reaction started: ____________________________

Time of WST-8 reaction completed: ____________________________

4. Check the color of water.

5. Test chemical information and check list of coloring potential.

<table>
<thead>
<tr>
<th>Test chemical</th>
<th>Physical state</th>
<th>Amount</th>
<th>Coloring</th>
<th>Test chemical</th>
<th>Physical state</th>
<th>Amount</th>
<th>Coloring</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS (NC)</td>
<td>LIQUID</td>
<td></td>
<td>Non treatment</td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td>50 µL</td>
<td></td>
<td></td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td>50 µL</td>
<td></td>
<td></td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td>50 µL</td>
<td></td>
<td></td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td>50 µL</td>
<td></td>
<td></td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td>50 µL</td>
<td></td>
<td></td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td>50 µL</td>
<td></td>
<td></td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td>50 µL</td>
<td></td>
<td></td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td>50 µL</td>
<td></td>
<td></td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td>50 µL</td>
<td></td>
<td></td>
<td>SOLID</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

Date: ____________ Operator: ____________ Check date: ____________ Study director: ____________

Secretariat: Check date: ____________ Name: ____________
MDS 1-3:
TEST FOR DETECTING CHEMICALS THAT INTERFERE WITH WST-8 ENDPOINT
STEP-3 (3.2.2.1)

Laboratory name: _ Test name: _____ Test no.: _____

1. Preparation of WST-8 dilution medium
 Warm EBSS for 30 minutes. □ Time/date: ___________
 CCK-8: (Lot no.: ________________________________ Expiration date: __________)
 EBSS: (Lot no.: ________________________________ Expiration date: __________)
 Volume _____ mL Time/date completed: ___________

2. Add WST-8 dilution medium (0.3mL) to the wells of the 24-well assay plate.
 To add WST-8 dilution medium (0.3mL) □ Time/date executed: ___________

3. Apply test chemicals to the wells of the 24-well assay plate.

4. Culture the 24-well assay plate in CO₂ incubator for 4 hours.
 Time of WST-8 reaction started: ________________________________
 Time of WST-8 reaction completed: ________________________________

5. Check the color of WST-8 medium.

6. Test chemical information and checked list of WST-8 assay interfere.

<table>
<thead>
<tr>
<th>Test chemical</th>
<th>Physical state</th>
<th>Amount</th>
<th>WST-8 assay interfere</th>
<th>Test chemical</th>
<th>Physical state</th>
<th>Amount</th>
<th>WST-8 assay interfere</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS (NC)</td>
<td>LIQUID</td>
<td></td>
<td>Non treatment (NC)</td>
<td>PBS (NC)</td>
<td>LIQUID</td>
<td></td>
<td>Non treatment (NC)</td>
</tr>
<tr>
<td></td>
<td>LIQUID 50 µL</td>
<td></td>
<td></td>
<td>SOLID mg</td>
<td>SOLID 50 µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIQUID 50 µL</td>
<td></td>
<td></td>
<td>SOLID mg</td>
<td>SOLID 50 µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIQUID 50 µL</td>
<td></td>
<td></td>
<td>SOLID mg</td>
<td>SOLID 50 µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIQUID 50 µL</td>
<td></td>
<td></td>
<td>SOLID mg</td>
<td>SOLID 50 µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIQUID 50 µL</td>
<td></td>
<td></td>
<td>SOLID mg</td>
<td>SOLID 50 µL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

Date: ___________ Operator: ___________ Check date: ___________ Study director: ___________

Secretariat Check date: ___________ Name: ___________
MDS 1-4:
PREPARATION OF FREEZE KILLED TISSUE (3.2.2)

Laboratory name: _____________ Test name: _____________ Test no.: _____________

1. Transfer LabCyte CORNEA-MODEL24 tissues to 50 mL tube or appropriate sterile container.

2. Freeze tissues in the -80°C deep-freezer for 30 minutes (1st freezing).
 Store for 30 minutes. □ Time/date: _____________

3. Thaw tissues in the 37°C incubator for 15 minutes.
 Store for 15 minutes. □ Time/date: _____________

4. Freeze tissues in the -80°C deep-freezer for more than 30 minutes (2nd freezing).
 Store for more 30 minutes. □ Time/date: _____________

5. Just before using, thaw tissues in the 37°C incubator for 15 minutes.
 Store for 15 minutes. □ Time/date: _____________

Note

Date: _____________ Operator: _____________ Check date: _____________ Study director: _____________

Secretariat Check date: _____________ Name: __

34
MDS 2:
PREPARATION OF LabCyte CORNEA-MODEL24 (3.3.1)

1. Warm up the assay medium and add 0.5mL of the assay medium to the wells of the 1st row on the 24-well assay plate.

 Assay medium: (Lot no.: ___________ Expiration date: ___________)
 Warm for 30 minutes.
 Add 0.5mL of assay medium to each well

2. Transfer culture inserts to wells in the 1st row on the 24-well assay plate.

 LabCyte CORNEA-MODEL24(Lot no.: ___________ Expiration date: ___________)
 Time/date executed: ___________
 Confirm that there are no bubbles under the cell culture insert.

3. LabCyte CORNEA-MODEL24 is cultured in CO₂ incubator overnight.

 Time/date of culture started: ___________

Note

Date: ___________ Operator: ___________ Check date: ___________ Study director: ___________
Secretariat Check date: ___________ Name: ___________
IN VITRO EYE IRRITATION TEST USING HUMAN CORNEAL TISSUE MODEL: LabCyte CORNEA-MODEL24

MDS 3-1(LIQUID):
APPLICATION OF LIQUID TEST CHEMICALS, RINSING AND POST-INCUBATION (3.3.2)

1. Warm up the assay medium and add 0.5mL of the assay medium to the wells of the 3rd row on the 24-well assay plate for LIQUID.
 Assay medium: (Lot no.: Expiration date:)
 Warm for 30 minutes. □ Time/date: Number of plate:
 Add 0.5mL of assay medium to each well □ Time/date:

2. Apply test chemicals to the LabCyte CORNEA-MODEL24.
 Time/date execution started:

3. LIQUID test chemical information

<table>
<thead>
<tr>
<th>Test chemical</th>
<th>Lot no.</th>
<th>Physical state</th>
<th>Test chemical vol.</th>
<th>Time of application</th>
<th>Time of rinsing</th>
<th>Exposure period (1 minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS (Negative control)</td>
<td></td>
<td>LIQUID</td>
<td>50 µL</td>
<td>1</td>
<td>3</td>
<td>□</td>
</tr>
<tr>
<td>Ethanol (Positive control)</td>
<td></td>
<td>LIQUID</td>
<td>50 µL</td>
<td>1</td>
<td>3</td>
<td>□</td>
</tr>
<tr>
<td>LIQUID, viscous</td>
<td></td>
<td>LIQUID</td>
<td>50 µL</td>
<td>2</td>
<td>3</td>
<td>□</td>
</tr>
<tr>
<td>LIQUID, viscous</td>
<td></td>
<td>LIQUID</td>
<td>50 µL</td>
<td>2</td>
<td>3</td>
<td>□</td>
</tr>
<tr>
<td>LIQUID, viscous</td>
<td></td>
<td>LIQUID</td>
<td>50 µL</td>
<td>2</td>
<td>3</td>
<td>□</td>
</tr>
<tr>
<td>LIQUID, viscous</td>
<td></td>
<td>LIQUID</td>
<td>50 µL</td>
<td>2</td>
<td>3</td>
<td>□</td>
</tr>
<tr>
<td>LIQUID, viscous</td>
<td></td>
<td>LIQUID</td>
<td>50 µL</td>
<td>2</td>
<td>3</td>
<td>□</td>
</tr>
<tr>
<td>LIQUID, viscous</td>
<td></td>
<td>LIQUID</td>
<td>50 µL</td>
<td>2</td>
<td>3</td>
<td>□</td>
</tr>
<tr>
<td>LIQUID, viscous</td>
<td></td>
<td>LIQUID</td>
<td>50 µL</td>
<td>2</td>
<td>3</td>
<td>□</td>
</tr>
</tbody>
</table>

4. After exposure to test chemical for 1 minute, wash out the LabCyte CORNEA-MODEL24 and transfer the culture inserts to the 3rd row on the 24-well assay plate.
 PBS: (Lot no.: Expiration date:)
 Hit PBS stream on the tissue surface directly. □
 Confirm that there are no bubbles under the cell culture insert. □ Time/date completed:

5. Culture LabCyte CORNEA-MODEL24 in CO₂ incubator for 24 hours.
 Time/date post-incubation started:
 Time/date post-incubation completed:
IN VITRO EYE IRRITATION TEST USING HUMAN CORNEAL TISSUE MODEL: LabCyte CORNEA-MODEL24

Date: Operator: Check date: Study director:
Secretariat Check date: Name:
APPLICATION OF SOLID TEST CHEMICALS AND RINSING (3.3.3)

1. Warm up the assay medium and add 0.5mL of the assay medium to the wells of 2nd and 3rd row on the 24-well assay plate for SOLID.

 - **Assay medium**: (Lot no.: ___________ Expiration date: ___________)
 - Warm for 30 minutes.
 - Add 0.5mL of assay medium to each well

2. Apply test chemicals to the LabCyte CORNEA-MODEL24 and transfer the culture inserts to the 2nd row on the 24-well assay plate.

3. **SOLID** test chemical information

<table>
<thead>
<tr>
<th>Test chemical</th>
<th>Lot no.</th>
<th>Physical state</th>
<th>Crush and grind</th>
<th>Test chemical amount.</th>
<th>Time of application</th>
<th>Exposure period (24hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non treatment (Negative control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>Lauric acid (Positive control)</td>
<td></td>
<td>SOLID</td>
<td>CRUSH and GRIND</td>
<td>mg, mg, mg</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

4. Culture LabCyte CORNEA-MODEL24 in CO₂ incubator for 24 hours.

5. After exposure to test chemical, wash out the LabCyte CORNEA-MODEL24 and transfer the culture inserts to the 3rd row on the 24-well assay plate.

 - **PBS**: (Lot no.: ___________ Expiration date: ___________)
 - Hit PBS stream on the tissue surface directly.

 - Time/date exposure started: ___________
 - Time/date exposure completed: ___________.
MDS 4-1:

WST-8 ASSAY (3.3.4.1, 3.3.4.2)

1. **Preparation of WST-8 dilution medium**
 - Warm EBSS for 30 minutes. □ Time/date: ____________
 - **CCK-8:** (Lot no.: ____________ Expiration date: ____________)
 - **EBSS:** (Lot no.: ____________ Expiration date: ____________)
 - Volume ____________ mL Time/date completed: ____________

2. **Add WST-8 dilution medium (0.3mL) to the wells in the 4th row on the 24-well assay plate.**
 - To add WST-8 dilution medium (0.3mL) □ Time/date executed: ____________

3. **After the operation, the blotted tissue transfer to wells of 4th row of 24-well assay plate.**
 - Time/date started: ____________ Time/date completed: ____________
 - Confirm that there are no bubbles under the cell culture insert. □

4. **Culture LabCyte CORNEA-MODEL24 in CO₂ incubator for 4 hours.**
 - Time of WST-8 reaction started: ____________
 - Time of WST-8 reaction completed: ____________

Note

Date: ____________ Operator: ____________ Check date: ____________ Study director: ____________

Secretariat Check date: ____________ Name: ____________

40
MDS 4-2:

SAMPLING OF REACTING WST-8 SOLUTION (3.3.4.3) AND MEASUREMENT (3.3.4.4)

Laboratory name: ___________________ Test name: ________________ Test no.: __________

1. Reacting WST-8 solution (200 µL) is transferred to each well on the 96-well plate.

 Transfer to the 96-well plate: □

 Time/date executed: _____________________

 Sample location on 96-well plate.

<table>
<thead>
<tr>
<th>LIQUID</th>
<th>SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>A blank</td>
<td></td>
</tr>
<tr>
<td>B PBS-1</td>
<td>PBS-2</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

2. Analyze extract OD at 450nm and 650nm, and calculate the OD(450nm-650nm).

 Analyze OD at 450nm and 650nm: □

 Calculate the OD (450nm-650nm): □

 Calculate cell viability and SD: □

 Cell viability and SD are recorded on a separate data sheet: □

 The data sheet is attached to the back of this sheet: □

 Check for input errors: □

 Time/date executed: _____________________

Note

Date: _______________ Operator: _______________ Check date: ___________ Study director: ___________

Secretariat: Check date: ___________________ Name: ___________________
REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev.</th>
<th>CONTENT</th>
<th>Date Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver.1.1</td>
<td>1) First version</td>
<td>Aug., 2012</td>
</tr>
<tr>
<td>Ver.1.2</td>
<td>1) Revised clerical error.</td>
<td>Aug., 2012</td>
</tr>
<tr>
<td>Ver.1.3</td>
<td>1) Revised clerical error.</td>
<td>Sep., 2012</td>
</tr>
<tr>
<td></td>
<td>Added the following supplementary explanation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Added more detail explanation about the conditions of WST-8 reaction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Added the formula of SD.</td>
<td></td>
</tr>
<tr>
<td>Ver.1.3PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ver.2.1</td>
<td>1) Revised clerical error.</td>
<td>May, 2013</td>
</tr>
<tr>
<td></td>
<td>2) In the section 1.2 “BACKGROUND”, changed statement about animal testing (Draize test).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) In the section 3.3. “TEST METHOD”, explained the washing protocol of the LIQUID and SOLID test chemical more briefly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) In the section 3.3. “TEST METHOD”, changed the WST-8 dilution rate with PBS from 1:10 to 1:5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) In the section 3.3. “TEST METHOD”, changed the reaction period of WST-8 from 5 hours to 4 hours.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) In the section 3.3. “TEST METHOD”, changed the condition of WST-8 reaction from shaking to standing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) In the section 3.3. “TEST METHOD”, changed the application-amount of SOLID chemicals from 50mg to 10mg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8) As assay acceptance criteria, added that SD (test chemicals) of tissue viability of 3 identically treated replicates ≤ 20 %.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9) In the prediction model of this EIT, changed the cut-off value of the mean viability from 50% to 40%.</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Changes</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Ver.2.2</td>
<td>1) Revised clerical error.</td>
<td>Sep., 2013</td>
</tr>
<tr>
<td></td>
<td>2) In the section 3.3. “TEST METHOD”, additionally explained that the solid test chemical is crush and grind in a mortar with pestle if necessary.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) In the section 3.3.2 “APPLICATION OF LIQUID TEST CHEMICALS AND RINSING (DAY 0~1)”, explained temperature condition (room temperature) at chemical application.</td>
<td></td>
</tr>
<tr>
<td>Ver.2.3</td>
<td>1) Revised clerical error.</td>
<td>Feb., 2014</td>
</tr>
<tr>
<td></td>
<td>2) In the section 3.3. “TEST METHOD”, explained about a blank preparation at WST-8 assay.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) In the section 3.3. “TEST METHOD”, changed the condition of WST-8 reaction from standing to shaking.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) In the section 3.3. “TEST METHOD”, explained about a blank preparation at WST-8 assay.</td>
<td></td>
</tr>
<tr>
<td>Ver.2.3.1</td>
<td>1) Revised clerical error.</td>
<td>Mar., 2014</td>
</tr>
<tr>
<td></td>
<td>2) About the prediction result of eye irritation, changed the classification from irritation/no irritation to GHS classification.</td>
<td></td>
</tr>
<tr>
<td>Ver.2.3.2MTT</td>
<td>1) At the analysis of cell viability, changed the assay method from WST-8 assay to MTT assay.</td>
<td>Jul., 2014</td>
</tr>
<tr>
<td>Ver.2.4.1</td>
<td>1) At the analysis of cell viability, changed the assay method from MTT assay to WST-8 assay.</td>
<td>Jan., 2015</td>
</tr>
<tr>
<td></td>
<td>2) In the section 3.3. “TEST METHOD”, changed the condition of WST-8 reaction from shaking to standing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) In the section 3.3. “TEST METHOD”, changed the dilution solution of WST-8 reaction from PBS to EBSS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) In the section 3.3. “TEST METHOD”, changed the reaction period of WST-8 from 5 hours to 4 hours.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) The standard of the additional testing was mentioned about a</td>
<td></td>
</tr>
<tr>
<td>Version 2.7</td>
<td>Page 44 of 45</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>October, 2018</td>
<td>J-TEC Japan Tissue Engineering Co., Ltd.</td>
<td></td>
</tr>
</tbody>
</table>

IN VITRO EYE IRRITATION TEST USING HUMAN CORNEAL TISSUE MODEL: LabCyte CORNEA-MODEL24

<table>
<thead>
<tr>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver.2.4.2</td>
<td>1) Changed the assay acceptance criterion of negative control from 0.5 < and < 2.0 to 0.6 < and < 1.5.</td>
</tr>
<tr>
<td></td>
<td>Mar., 2015</td>
</tr>
<tr>
<td>Ver.2.4.2m</td>
<td>1) The judgement of the chemical which is a result of the borderline was added.</td>
</tr>
<tr>
<td></td>
<td>Jul., 2015</td>
</tr>
<tr>
<td>Ver.2.5.1</td>
<td>1) Revised clerical error.</td>
</tr>
<tr>
<td></td>
<td>2) In the prediction model of this EIT, changed the cut-off value of the mean viability from 50% to 40%.</td>
</tr>
<tr>
<td></td>
<td>3) Changed the judgement of equivocal results.</td>
</tr>
<tr>
<td></td>
<td>4) Changed the assay acceptance criterion of negative control from 0.6 < and < 1.5 to 0.5 < and < 1.3.</td>
</tr>
<tr>
<td></td>
<td>5) In the section 3.2. “TEST FOR DETECTING CHEMICALS THAT INTERFERE WITH WST-8 ENDPOINT”, revised description has clearly.</td>
</tr>
<tr>
<td></td>
<td>6) Added MDS1-2 and MDS 1-3.</td>
</tr>
<tr>
<td></td>
<td>Aug., 2015</td>
</tr>
<tr>
<td>Ver.2.5.1m</td>
<td>1) Revised clerical error.</td>
</tr>
<tr>
<td></td>
<td>2) Changed allocation for a 96-well plate of pattern which consists of freeze killed tissue (Fig.12B).</td>
</tr>
<tr>
<td></td>
<td>Sep., 2015</td>
</tr>
<tr>
<td>Ver. 2.5.1mr</td>
<td>1) Revised Fig.2B</td>
</tr>
<tr>
<td></td>
<td>Sep., 2015</td>
</tr>
<tr>
<td>Ver. 2.5.2</td>
<td>1) In the section 3.3. “TEST METHOD”, explained the washing protocol of the LIQUID and SOLID test chemical more briefly.</td>
</tr>
<tr>
<td></td>
<td>2) In the MDS 3-1 and the MDS 3-2, added the check box about the washing procedure.</td>
</tr>
<tr>
<td></td>
<td>3) In the MDS 3-2, added the check box about crush and grind of</td>
</tr>
<tr>
<td>Version</td>
<td>Details</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 2.5.4 | 1) In the section 3.3. "TEST METHOD", added attention point of the washing procedure.
2) In the section 4.3 "ASSESSMENT FLOWCHART", Change numbers of test run from three independent run to single run. |
| June, 2016 |
| 2.5.5 | 1) Revised clerical error.
2) As assay acceptance criteria, changed that SD (negative control, positive control and test chemicals) of tissue viability of 3 identically treated replicates from ≤ 20 % to ≤ 18 %. |
| October, 2016 |
| 2.5.6 | 1) Revised clerical error.
2) Detection protocol of coloring interference is changed from using WST-8 medium to distilled water and correction of coloring interference is changed from using freeze-killed tissue to using living tissue without WST-8 reaction. |
| February, 2017 |
| 2.6 | 1) Changed the assay acceptance criterion of negative control from 0.5 ≤ and ≤ 1.3 to 0.5 ≤ and ≤ 1.6. |
| June, 2018 |
| 2.7 | 1) Revised clerical errors. There is no change of protocol. |